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Anomalous scaling for passively advected magnetic fields
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The scaling behavior of the covariance of the magnetic field in the three-dimensional kinematic dynamo
problem is considered. The velocity is Gaussian and &-correlated in time; its structure function scales with a
positive exponent £ No unbounded growth of the magnetic field, i.e., no dynamo effect, occurs for £§&<1. A
statistically steady state is then attained in the presence of a homogeneous forcing concentrated at the scale
L. In the limit of small molecular diffusivities and large L, the correlation function of the magnetic field has
an inertial-range scaling exponent —[(3+§)/2]+(3/2)y1—(1/3)£(£+2). This result is extended to the
d-dimensional case. In all cases a crucial role is played by zero modes.

PACS number(s): 47.27.Gs, 47.27.Te

The problem of the scaling laws for a passive scalar ad-
vected by a velocity field &-correlated in time has recently
received a great deal of attention [1-7]. A general mecha-
nism for the appearance of anomalous scaling has been iden-
tified [3—5]. Nontrivial exponents are associated with zero
modes of the closed equations satisfied by the simultaneous
correlation functions. The covariance can be determined ex-
plicitly and does not show any anomaly [1]. Perturbative
calculations indicate that anomalous exponents appear in
fourth-order correlations. Our aim is to analyze a similar
problem for the kinematic dynamo, i.e., magnetic fields. The
major difference is that the magnetic field B can be stretched
and (B?) is not conserved in the absence of forcing and
dissipation. A nontrivial scaling behavior appears already at
the level of second-order correlations. The calculation of the
exponent dominating in the inertial range is carried out in a
nonperturbative way.

The equations of kinematic dynamo theory are (see, e.g.,
Refs. [8,9])

9,B+v-VB=B-Vv+vV’B+f. (1)

Here, the velocity v, the force f and the magnetic field B are
all divergence free. The unforced case will first be consid-
ered in the analysis of the turbulent dynamo. The force will
then be needed to maintain a statistically stationary state in
the cases where no dynamo effect is present.

The velocity is assumed Gaussian, isotropic, d-correlated
in time, and its correlation function is

(valx,0)vg(x",t"))y=6(t—1")D 5(x—x")
=0(1=1")[Dop(0) =S op(r)]. 2

The structure function S scales with exponent ¢ (with
0=é¢é<2):

Sap(r)=Dré| (£+2)8,5— 62|, )

in the range Ayy<<r<<Az. The cutoffs Az and Ay are the
largest and the smallest scales in our problem. The energy
D,,(0) diverges A% . The force f is Gaussian,
S-correlated in time, isotropic, parity invariant and such that
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f :C(f(r,t) -f(0,0)>dt=F(£) =Fy(r). @

The function F is chosen such that its Fourier transform is
concentrated mostly around wave numbers O(1). The gen-
eral form of the covariance of B is (see, e.g., Ref. [10])

(Bo(x.)B 4(x" 1)) = G1(r,1) Bup+ G2(r,z)r‘;#, )

where r=x—x' and the functions G, and G, are related by

G, 1 9 Gor? ©)
—_— = ro).

ar r? &r( o)
The second-order correlations are thus defined in terms of a
single function; it is convenient to express everything in
terms of the trace of the correlation function tensor

H(r,t)=3 G (r,t)+G,(r,1). 7

We then obtain from (6) and (7)

G—+H 1frH 2d 8
=t3 755, (p)p~dp, (8)

H 3 (r
— 4 2
GZ 2 + 27'3_[0H(p)p dp' (9)

It is easily shown that, on account of the & correlation in time
of v and f, the function H satisfies a closed, exact equation.
This can be derived using Gaussian integration by parts (see,
e.g., Ref. [11], p. 43), which states that, for a Gaussian field
g(x), the following equality holds:

87 (g(-
(57 = | dx’<g<x)g(x'>><7g(f§(7)2>

(10)

Here, .7 is a generic smooth functional of the field g and
6/ 6g(x) denotes the functional derivative. By exploiting
(10) and the & correlation in time, we obtain, after lengthy
but simple algebra, the following equation:
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2 9 OH
—_ 2 2+&6\ £-2
J,H pele (vr*+Dr )ar +F (r)+2Dér
oH =2) (r
X (1+2§)H+r§7+§£§r3—)f H(p)p%dp|. (11)
0

The homogeneous part of (11) was derived by diagrammatic
techniques in Ref. [12] for a generic velocity correlation
function.

It is now important to understand whether (11) implies
relaxation to a statistically stationary state or if unbounded
growth of the magnetic field (dynamo effect) takes place. Let
us then consider Eq. (1) [or (11)] with no force. For £ suffi-
ciently small, we do not expect any dynamo effect. Indeed,
for ¢€=0, Eq. (11) reduces to the same equation as for a
passive scalar [1]. The terms responsible for the stretching of
the magnetic field are therefore proportional to §. In order to
analyze the dynamo issue in more detail, it is convenient to
perform the following transformation:

(v+Dré)'?

7

Y(r.)= Jormp,r)pzazp, (12)

which reduces (11) to a Schrodinger-like form. The energies
E of the homogeneous operator are defined by the equation

1 d*y

where (r,t) = (r)exp(—Etr). The signs have been chosen
to be consistent with the quantum mechanical notation.
Negative energies E clearly correspond to a dynamo effect.
The position-dependent mass m(r) and the potential U(r)
are given by

1

204D (14

m(r)=

417+ vDr§(8—3§—§2)+D2r2§(4—35— %gz)
U(r)= .

r2(v+Dr?f) ’
(15)
An immediate consequence of (15) is that the potential is
everywhere repulsive for £ sufficiently small. The ground
state energy E is therefore non-negative, as can be shown
by using its variational expression [13]. This expression is
the same as for an ordinary Schrodinger equation, except for
the positive definite denominator. It is then sufficient to ana-
lyze the problem of the existence of bound states for a par-
ticle of unit mass in a potential V(r)=m(r)U(r). The as-
ymptotic behaviors of V(r) are

2 2-36-38)
m(r)U(r)~;§ small r; —————

- large r.

(16)

The potential is always repulsive at small distances, becom-
ing attractive at infinity for £€=0.915. The range where no
dynamo effect occurs actually extends up to £=1. Let us
indeed recall some known results of quantum mechanics
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concerning an attractive potential varying at infinity as
—c/r? (see, e.g., Ref. [14], §35). For ¢>1/4, the particle
“falls” and arbitrarily large negative energies may be in-
volved. On the other hand, for ¢ < 1/4 the number of levels of
negative energy is finite and depends on the form of the
potential at finite distances. It is-also known that a potential
of the form — ¢/r? (with ¢ <1/4) in the whole space does not
possess any negative energy level. The eigenmode corre-
sponding to E=0 has indeed no node and thus corresponds
to the ground state. This result carries over to our case. The
critical value 1/4 corresponds to £=1 in the asymptotic ex-
pression (16). Furthermore, for £<1, the asymptotically sub-
dominant terms in (15) are both repulsive. The function
m(r)U(r) is thus everywhere larger than —c/r%, with
c<1/4. Tt follows that the energies E in (13) are non-
negative for £&<1. Note finally that a modified semiclassical
analysis indicates that negative energies appear indeed for
&>1, ie., the value £=1 is the threshold for the dynamo
effect [15].

Knowing that no dynamo effect is present for £<1, it
makes now sense to analyze the behavior of the correlation
function in the statistically steady state maintained by the
force f. The single-time correlations do not depend on time
and the function ¢, defined in (12), satisfies

d*y
A= g —m(r)U(r) ¢

= Fi(p)p*dp. (17

. m(r)(v+Drf) szf‘

0

We are interested in the scaling behavior of H(r) in the
inertial range #<<r<<L. The dissipation scale is
7=0((v/D)"¢) and we shall consider the leading-order be-
havior for large L’s and small »’s. A nontrivial scaling be-
havior can take place due to zero modes (functions annihi-
lated by .#,). This general mechanism was recently
proposed in Refs. [3—5]. A crucial remark is that the zero
modes are not globally acceptable solutions because they do
not satisfy the appropriate “boundary conditions” (correct
large-scale and small-scale behavior). However, in the pres-
ence of the forcing, it may be possible to match at L a zero
mode with a solution of the inhomogeneous problem and
thereby satisfy the large-scale boundary condition. This is
precisely what happens here. Let us first consider (17) with
no external forcing. The operator .7, has two scaling zero
modes in the range 7<<r<<Az. The scaling exponents s,
and s, are

—
w

=—+_J1—-(13)&(E+2). (18)

51,2—2~2

Furthermore, it follows from (16) that in the far dissipation
range there is a regular zero mode which scales as r? [a
constant for H(r)]. The problem now is to understand which
exponent in (18) corresponds to the regular zero mode. In
principle, a full asymptotic matching should be carried out.
For this, a new space variable rescaled by 7 should be intro-
duced, the resulting equation being solved and matched with
the power-law solutions in the inertial range. Similarly, the
power-law solutions should be matched at A g with the de-
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caying solution obtained for r> Az . Note that in this region
the dynamics is governed by transport equations with effec-
tive transport coefficients. In our case with no helicity, and
therefore no « effect [8], the equations are essentially the
same as for a passive scalar with an eddy diffusivity
vg>v. In practice, rather than going through this cumber-
some procedure, we prefer using the following simpler and
more physical arguments [16] which are inspired by §35 of
Ref. [14]. The general solution of the homogeneous equation
2, ¥=0 with zero molecular diffusivity is

Y=Ar''+Br*, (19)

where A and B are two arbitrary constants. We consider now
a neighborhood of the origin having radius O(#), where we
replace the effective potential V(r)=m(r)U(r) by the con-
stant V(7). The regular solution of the Schrodinger equation
is explicitly known and can be patched with (19) at #. It is
then easy to find that the ratio

B
7 =const X 1752, (20)

Then, going to the limit »—0, we find that B/A—0. Equa-
tion (20) clearly indicates that the zero mode which is regu-
lar in the dissipation range corresponds to the exponent s, in
the inertial range. The same argument repeated at the infra-
red cutoff A g— oo leads to

B -s
chonst XAf]‘{ 2, 21

The conclusion stemming from (20) and (21) is that there is
no nontrivial zero mode which satisfies the boundary condi-
tions at both zero and infinity: the zero mode with exponent
s1 (in the inertial range) does not match correctly at large
scales, while the other one is not appropriate at small scales.
However, in the presence of the forcing, the situation at large
scales is modified. Let us indeed define the new function
¢=r""1y. Equation (17) in the range n<<r<<A reduces
then to a form which can be immediately integrated. The
general solution is

Y=ar’'+br2

rS! r P o’
72_s'ld J ’ —s2—§/2d rJ’ ~2F ~ d~,
> #Dfop p 0(p) P, P (p)dp

(22)

where a and b are two arbitrary constants to be fixed by
imposing the boundary conditions. The parameter b is fixed
by imposing the boundary condition on the ultraviolet side,
i.e., that the most divergent term 2 does not appear in the
expansion of ¢ for »<<L. This gives b=0. By requiring that
the most divergent term »°! does not appear in the expansion
of ¢ for r>L, we obtain

1 F fp fp’
_ —2s 1\—s,— &2 ’ ~2 ~ ~
a= id 272y Fr(p)dp.
2\/50;0 po(p) PP L(p)f)
23)
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The behavior in the inertial range 7<<r<<L of the trace
H(r) of the covariance is

1 [ (L““’l‘f/z si+1—¢nr
7'7

H(F)ZEB S17 52 Sl_l+§/2

Xfo p""‘”‘f’zF(p)dp)

2k

F(0) 5-9 } (24)

3 (3+s5,—&R2)(3+s,—&2)
The dominant contribution in (24) scales with the exponent

3+¢ 3 ’
y:~_§+_ 1_(1/3)§(§+2)z—§—%+0(§3),

2 2
(25)

which is universal, i.e., depends neither on v nor on the
detailed form of F. The constant is, however, nonuniversal.
Note that the expansion in (25) coincides with the one which
would be obtained by the perturbation technique used in [4].

The previous results can be generalized to the
d-dimensional case (d=2). Equation (1) governs again the
dynamics of B, which is a d-dimensional vector field [17].
The definition (3) of the structure function S becomes

rarﬁ
Sap(r)=Dré (d+ &~ 1)5aﬂ—§—7— . (26)

The transformation reducing the equation for H(r) to a
Schrodinger-like form is

_ (d—1)
(d—1) L
2

@112

(V+D

forH(p,t)pd*‘dp,
(27)

P(r.r)=

where the position-dependent mass m(r) and the potential
U(r) are

m(r)= (28)

2v+D(d—1)r¢’

1
U(r)= e (d+1)(d— 1)+ vDré(d+1)(d—1)?

(d+1)(d—1)3

—2§(d+§)(d~2)]+D2r2§( 7]

1
“fd(d_z)(d'*‘f_])”m. (29)

It is particularly interesting to consider the two-
dimensional (2D) case. The. effective potential V=mU re-
duces for d=2 to V=3/4r%. Since the potential is every-
where repulsive there is no dynamo effect. This is in
agreement with the general antidynamo theorem valid for 2D
magnetic fields [9]. The vector potential A=Az satisfies in-
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deed a passive scalar equation. The covariance C(r) of A
can then be calculated exactly and H= —V2C(r). On the
other hand, we can apply the same procedure used previ-
ously for the 3D case. The dominant behavior of H(r) in the
inertial range is

L LA2-8) (=

H(r)=—r 5D .

pF(p)In(p)dp, (30)

which coincides indeed with —VZC(r). The identity
JSpF(p)dp=0, valid for 2D solenoidal random fields (see
Ref. [10]), has been used in deriving (30). Note that a simple
dimensional argument allows one to predict the scaling
r2~ ¢ for C(r) and thus the exponent — & appearing in (30). It
follows that anomalous inertial-range scaling for H(r)
should be defined as a power-law behavior r?, with y
# —&. In this sense, anomalous scaling disappears in the
infinite-dimensional limit. The exponent of H(r) in the
d-dimensional case is indeed
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d( (d—2)(al+§—1)>”2 d £

LS L To BV ESY

aolz]
—§2d+0d2. 31)
Note finally that the same arguments used in 3D give a range
of ¢ where no dynamo effect takes place which enlarges with
d (for d=3).

We have thus shown that in the kinematic dynamo prob-
lem a nontrivial scaling behavior appears already at the level
of second-order correlations. The scaling exponent arises
from the balance between the stretching and the damping due
to the eddy diffusivity and is associated with a zero mode.
This is in agreement with the general mechanism recently
proposed in Refs. [3—5]. The exponent is universal, i.e., de-
pends neither on the diffusivity nor on the detailed form of
the large-scale forcing. However, the constants appearing in
the correlation functions are nonuniversal.
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